Full Table

From CliC Wiki
Jump to: navigation, search
style="vertical-align:top;"
CHARACTERISTICS GIS_AWI_ISSM1 GIS_AWI_ISSM2 GIS_ILTS_SICOPOLIS1 GIS_ILTS_SICOPOLIS2 GIS_LGGE_ELMER GIS_LSCE_GRISLI GIS_MIROC_ICIES00 GIS_MIROC_ICIES01 GIS_MPI_PISM0INITMIP GIS_UAF_PISM36 GIS_VUB_GISMHOM GIS_VUB_GISMSIA GIS_BCG_BISICLES GIS_LANL_CISM GIS_JPL1_ISSM2
Numerical Method Triangular Finite Element,
Arbitrary Lagrangian/Eulerian
Triangular Finite Element,
Arbitrary Lagrangian/Eulerian
Finite Difference Finite Difference Triangular Finite Element Finite Difference Finite Difference Finite Difference Finite Difference Finite Difference Finite Difference,
Alternating-Direction-Implicit
Finite Difference,
Alternating-Direction-Implicit
Finite Volume with adaptive mesh refinement Finite Element (square/hexahedral) for velocity,
Finite Volume for transport
Finite Element (triangular P1),
Arbitrary Lagrangian-Eulerian
Native Grid H: 5-50 km, V: 15 layers H: 5-50 km, V: 15 layers H: 5 km, V: 81 layers H: 5 km, V: 81 layers H: 1.5-45 km, no vertical layers H: 5 km, V: 21 layers H: 10 km, V: 26 layers H: 10 km, V: 26 layers H: 5 km, V: 50 m terrain following H: 3600 m; V: 20 m, equal spacing H: 5 km, V: 30 layers H: 5 km, V: 30 layers H: anisotropic, usually 1.2-4.8 km
V: 10 layers (thermal only)
H: 4 km, V: 10 layers H: 1-15 km, V: N/A (2D model)
Native Projection EPSG 3413 EPSG 3413 Bamber et al, 2001 Bamber et al, 2001 Bamber et al, 2001 Bamber et al, 2001 Not Given Not Given Bamber et al, 2001 EPSG 3413 Polar Stereographic (71°N, 44°W) Polar Stereographic (71°N, 44°W) Morlighem et al, 2014 Bamber DEM (polar stereographic, WGS84) Polar Stereographic (70°N, 45°W)
Interpolation Method to Diagnostic Grid Not Given Not Given Same Grid Same Grid Flux variables: Conservative (remapycon)
State variables: Bilinear
Same Grid Not Given Not Given Same Grid ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure for output,
Matlab TriScatter for SMB & T
First-order conservative Linear
Interpolation Method to Diagnostic Grid Not Given Not Given Same Grid Same Grid Flux variables: Conservative (remapycon)
State variables: Bilinear
Same Grid Not Given Not Given Same Grid ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure for output,
Matlab TriScatter for SMB & T
First-order conservative Linear
Time Step 2 months 2 months 6 months 6 months 0.005 year Adaptive 0.125 year 0.125 year Adaptive, << 1 year Adaptive 0.01 year 0.01 year Adaptive, mean ~ 12.5 days 0.2 year 2 weeks
Ice Flow Mechanics HO (Blatter-Pattyn) HO (Blatter-Pattyn) SIA SIA SSA Hybrid SIA-SSA SIA SIA Hybrid SIA-SSA Hybrid SIA-SSA HO (Blatter-Pattyn) SIA SSA, vertical shear retained in
nonlinear rheology, Schoof & Hindmarsh, 2010
Depth-integrated HO, Goldberg, 2011 SSA
Basal Sliding Robin BC for basal stress:
Sigma_b = coefficient^2
u_b|^(s-1) * u_b
with r and s equal 1 and
Neff=rho_ice*g*H+rho_water*g*z_s
Weertman sliding,
Greve & Herzfeld, 2013
Weertman sliding,
Greve & Herzfeld, 2013
Weertman sliding (m = 1) Not Given Weertman sliding (m = 3) Weertman sliding (m = 3) Weertman sliding (m = 4) Pseudo-Plastic (q = 0.6) Weertman sliding (m = 3),
Local approach to basal shear stress,
lubrication by meltwater parameterized
Furst et al, 2013 and 2015
Weertman sliding (m = 3),
lubrication by meltwater parameterized
Furst et al, 2013 and 2015
Linear Pseudo-plastic (q = 0.5) Viscous sliding