ISMIP6 Full Table

From CliC Wiki
Jump to: navigation, search
CHARACTERISTICS GIS_AWI_ISSM1 GIS_AWI_ISSM2 GIS_ILTS_SICOPOLIS1 GIS_ILTS_SICOPOLIS2 GIS_LGGE_ELMER GIS_LSCE_GRISLI GIS_MIROC_ICIES00 GIS_MIROC_ICIES01 GIS_MPI_PISM0INITMIP GIS_UAF_PISM36 GIS_VUB_GISMHOM GIS_VUB_GISMSIA GIS_BCG_BISICLES GIS_LANL_CISM GIS_JPL1_ISSM2
Numerical Method Triangular Finite Element,
Arbitrary Lagrangian/Eulerian
Triangular Finite Element,
Arbitrary Lagrangian/Eulerian
Finite Difference Finite Difference Triangular Finite Element Finite Difference Finite Difference Finite Difference Finite Difference Finite Difference Finite Difference,
Alternating-Direction-Implicit
Finite Difference,
Alternating-Direction-Implicit
Finite Volume with adaptive mesh refinement Finite Element (square/hexahedral) for velocity,
Finite Volume for transport
Finite Element (triangular P1),
Arbitrary Lagrangian-Eulerian
Native Grid H: 5-50 km, V: 15 layers H: 5-50 km, V: 15 layers H: 5 km, V: 81 layers H: 5 km, V: 81 layers H: 1.5-45 km, no vertical layers H: 5 km, V: 21 layers H: 10 km, V: 26 layers H: 10 km, V: 26 layers H: 5 km, V: 50 m terrain following H: 3600 m; V: 20 m, equal spacing H: 5 km, V: 30 layers H: 5 km, V: 30 layers H: anisotropic, usually 1.2-4.8 km
V: 10 layers (thermal only)
H: 4 km, V: 10 layers H: 1-15 km, V: N/A (2D model)
Native Projection EPSG 3413 EPSG 3413 Bamber et al, 2001 Bamber et al, 2001 Bamber et al, 2001 Bamber et al, 2001 Not Given Not Given Bamber et al, 2001 EPSG 3413 Polar Stereographic (71°N, 44°W) Polar Stereographic (71°N, 44°W) Morlighem et al, 2014 Bamber DEM (polar stereographic, WGS84) Polar Stereographic (70°N, 45°W)
Interpolation Method to Diagnostic Grid Not Given Not Given Same Grid Same Grid Flux variables: Conservative (remapycon)
State variables: Bilinear
Same Grid Not Given Not Given Same Grid ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure for output,
Matlab TriScatter for SMB & T
First-order conservative Linear
Interpolation Method to Diagnostic Grid Not Given Not Given Same Grid Same Grid Flux variables: Conservative (remapycon)
State variables: Bilinear
Same Grid Not Given Not Given Same Grid ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure for output,
Matlab TriScatter for SMB & T
First-order conservative Linear
Time Step 2 months 2 months 6 months 6 months 0.005 year Adaptive 0.125 year 0.125 year Adaptive, << 1 year Adaptive 0.01 year 0.01 year Adaptive, mean ~ 12.5 days 0.2 year 2 weeks
Ice Flow Mechanics HO (Blatter-Pattyn) HO (Blatter-Pattyn) SIA SIA SSA Hybrid SIA-SSA SIA SIA Hybrid SIA-SSA Hybrid SIA-SSA HO (Blatter-Pattyn) SIA SSA, vertical shear retained in
nonlinear rheology, Schoof & Hindmarsh, 2010
Depth-integrated HO, Goldberg, 2011 SSA
Basal Sliding Sigma_b = coefficient2 × Neff r × |u_b|(s-1) × u_b
with r and s equal 1 and
Neff=rho_ice*g*H+rho_water*g*z_s
Sigma_b = coefficient2 × Neff r × |u_b|(s-1) × u_b
with r and s equal 1 and
Neff=rho_ice*g*H+rho_water*g*z_s
Weertman sliding,
Greve & Herzfeld, 2013
Weertman sliding,
Greve & Herzfeld, 2013
Weertman sliding (m = 1) Not Given Weertman sliding (m = 3) Weertman sliding (m = 3) Weertman sliding (m = 4) Pseudo-Plastic (q = 0.6) Weertman sliding (m = 3),
Local approach to basal shear stress,
lubrication by meltwater parameterized
Furst et al, 2013 and 2015
Weertman sliding (m = 3),
lubrication by meltwater parameterized
Furst et al, 2013 and 2015
Linear Pseudo-plastic (q = 0.5) Viscous sliding
Thermodynamics Enthalpy (Aschwanden et al, 2013) Enthalpy (Aschwanden et al, 2013) Thermomechanical Thermomechanical None; Fixed viscosities from SICOPOLIS Thermomechanical Thermomechanical Thermomechanical Enthalpy (Aschwanden et al, 2013) Enthalpy (Aschwanden et al, 2013) Thermomechanical Thermomechanical Thermomechanical Thermomechanical Thermomechanical
Basal Hydrology None None None None None Darcian, from Peyaud, 2006 None None Local storage only Local storage, Bueler & van Pelt, 2015 None None None None None
Ice Shelves Yes
Beckman & Goose melting parameterization
Yes
Beckman & Goose melting parameterization
No No Yes Yes No No Yes Yes No No Yes
Thickness-based melting parameterization
No Yes
Observed melt rates
Advance and Retreat Freely evolving grounding line
fixed position of calving front and grounded ice margin
Freely evolving grounding line
fixed position of calving front and grounded ice margin
Freely evolving grounded ice margin,
limited to present-day extent
Freely evolving grounded ice margin Freely evolving grounded ice margin
and grounding line
Fixed calving front
Freely evolving grounded ice margin,
grounding line, and calving front
Retreat only Free Freely evolving grounded ice margin,
grounding line, and calving front
Freely evolving grounded ice margin,
grounding line, and calving front;
retreat only for calving front
Freely evolving grounded ice margin Freely evolving grounded ice margin Freely evolving grounded ice margin,
grounding line, and calving front
after initialization
Freely evolving grounded ice margin Freely evolving grounding line
Grounding Line Determination Subelement migration Subelement migration N/A N/A Flotation Flotation Flotation Flotation Flotation Subgrid parameterization,
Feldmann et al, 2014
N/A N/A Flotation Flotation Floating, sub-element parameterization
Calving Fixed position for the calving front
(i.e. calving exactly compensates
outflow domain margins)
Fixed position for the calving front
(i.e. calving exactly compensates
outflow domain margins)
No explicit calving No explicit calving Fixed position for calving front None All floating ice calves All floating ice calves Thickness < 200 m;
Stress-based law,
Levermann et al, 2012
Retreat only At prescribed coast mask,
ocean-induced ice discharge parameterized,
Furst et al, 2015
At prescribed coast mask,
ocean-induced ice discharge parameterized,
Furst et al, 2015
Surface crevasse depth,
Benn et al, 2007; Nick et al, 2010
All floating ice calves Fixed calving front
Spin-Up/Initialization Methods Combined: horizontal velocity assimilated,
thermo spin-up (MODERN SURFACE TEMP)
Combined: horizontal velocity assimilated,
thermo spin-up (PALEO SURFACE TEMP)
Spin-Up (125 ka) with T converted from
GRIP delta-18 O records;
essentially fixed topography
Spin-Up (135 ka) with T converted from
GRIP delta-18 O records;
free evolution of all fields
Combined: Viscosity from SICOPOLIS Spin-Up;
horizontal velocity assimilated
Combined: horizontal velocity assimilated,
followed by 20 ka relaxation spin-up
Combined: Basal sliding matched to observed
geometry (Pollard & DeConto, 2012);
thermal spin-up to steady state
Spin-Up (125 ka), free evolution,
with SeaRISE forcing
Spin-Up (135 ka), free evolution,
using SeaRISE temperature index and sea level
Spin-Up (glacial cycle) followed by
nudging to modern ice thickness
Spin-Up (2 glacial cycles with SIA, 3000 years HO)
targeting observed geometry and volume
evolution for 1990-onwards
Spin-Up (2 glacial cycles) forced by T derived
from ice core data then (1958-2005) by
ECMWF atmosphere
Combined: Horizontal velocity assimilation
with fixed geometry followed by relaxation of surface
Spin-Up (20 ka) equilibration, starting from
present day geometry
Combined: Assimilation of present conditions,
followed by 50 ka relaxation and historical run
Initial Surface Mass Balance RACMO2 RACMO2 PDD, Greve & Herzfeld, 2013 PDD, Greve & Herzfeld, 2013 1989-2008 mean from MAR forced by ERAI 1979-2014 mean from MAR forced by ERAI From SeaRISE PDD (Reeh, 1991) PDD, no temperature lapse rate RACMO 1960-1990 mean PDD/retention, different factors for snow vs ice,
Janssens & Huybrechts, 2000
PDD/retention, different factors for snow vs ice,
Janssens & Huybrechts, 2000
1997-2006 mean from HIRHAM5 RCM with
lateral boundary forcing from ERAI
Lucas-Pilcher et al, 2012
1961-1990 RACMO2 climatology,
Van Angelen et al, 2013
SMB reconstruction, Box, 2013
Year(s) of Initial Condition 2000 2000 1990 1990 2000-2010 2000 2004 2004 ~2006 ~2007 2005 2005 1997-2006 1961-1990 2012
Forward Experiment Duration 100 years 100 years 100 years 100 years 100 years 200 years 100 years 100 years 300 years 100 years 100 years 100 years 100 years 100 years 100 years
Parameter Values rho_i = 917 kg m^(-3); rho_sw = 1027 kg m^(-3);
g = 9.81 m s^(-2); beta = 7.9e-8 kPa^(-1)
rho_i = 917 kg m^(-3); rho_sw = 1027 kg m^(-3);
g = 9.81 m s^(-2); beta = 7.9e-8 kPa^(-1)
rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3);
g = 9.81 m s^(-2)
rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3);
g = 9.81 m s^(-2)
rho_i = 910 kg m^(-3); rho_sw = 1028 kg m^(-3);
g = 9.81 m s^(-2)
rho_i = 918 kg m^(-3); rho_fw = 1000 kg m^(-3);
g = 9.81 m s^(-2)
rho_i = 910 kg m^(-3); rho_sw = 1028 kg m^(-3);
g = 9.81 m s^(-2)
rho_i = 910 kg m^(-3); rho_sw = 1028 kg m^(-3);
g = 9.81 m s^(-2)
rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3);
g = 9.81 m s^(-2)
rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3);
g = 9.81 m s^(-2)
rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3);
g = 9.81 m s^(-2)
rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3);
g = 9.81 m s^(-2)
rho_i = 917 kg m^(-3); rho_sw = 1023 kg m^(-3);
g = 9.81 m s^(-2)
rho_i = 917 kg m^(-3); rho_sw = 1023 kg m^(-3);
g = 9.81 m s^(-2);
c_i = 2117 J/kg/deg;
L_i = 337,500 J/kg
rho_i = 917 kg m^(-3); rho_sw = 1023 kg m^(-3);
rho_fw = 1000 kg m^(-3);
g = 9.8 m s^(-2)
Data Sets Used Velocity: Rignot & Mouginot, 2012
Bed: Morlighem et al, 2014 with fill-in from Bamber et al, 2013
Geo Heat Flux: Shapiro & Ritzwoller, 2004
Velocity: Rignot & Mouginot, 2012
Bed: Morlighem et al, 2014 with fill-in from Bamber et al, 2013
Geo Heat Flux: Shapiro & Ritzwoller, 2004
Velocity: N/A
Bed: Herzfeld et al, 2012
Geo Heat Flux: Greve, 2005
Velocity: N/A
Bed: Bamber et al, 2013
Geo Heat Flux: Purucker, 2012 (pers comm), following Fox Maule et al, 2005
Velocity: MEaSUREs 2000-2008
Bed: Morlighem et al, 2015 (BedMachine) with fill-in from Bamber et al, 2013
Velocity: Joughin et al, 2010
Bed/Surface: Bamber et al, 2013
Geo Heat Flux: Fox Maule et al, 2005
Not Given Not Given All from SeaRISE reference data set Velocity: Rignot & Mouginot, 2012
Geometry: Morlighem et al, 2014
Geo Heat Flux: Shapiro & Ritzwoller, 2004
Velocity: Joughin et al, 2010
Geometry: Bamber et al, 2013
Geo Heat Flux: Shapiro & Ritzwoller, 2004, adjusted by ice core data
Velocity: Joughin et al, 2010
Geometry: Bamber et al, 2013
Geo Heat Flux: Shapiro & Ritzwoller, 2004, adjusted by ice core data
Velocity: Rignot & Mouginot, 2012
Geometry: Morlighem et al, 2014
Temperature (initialization): Price et al, 2011
Geometry: Morlighem et al, 2011
Geo Heat Flux: Constant
Velocity: Rignot & Mouginot, 2012
Geometry: Morlighem et al, 2014
Geo Heat Flux: Shapiro & Ritzwoller, 2004
Requested Variables Not Submitted tendacabf, tendlibmassbf;to be included in final tendacabf, tendlibmassbf;to be included in final licalvf and tendlicalyf are dummy values
(no explicit calving rate)
licalvf and tendlicalyf are dummy values
(no explicit calving rate)
hfgeoubed, libmassbf, litempsnic, litempbot
(no thermal calculations) uvelsurf, vvelsurf, wvelsurf, uvelbase, vvelbase, wvelbase (SSA is depth averaged) licalvf (interpolation TBD)
basal/surface vertical velocities, basal mass balance flux, calving flux (not calculated); land ice/grounded ice/ floating ice fractions (not used by model); limnsw, iareaf, tendlibmassbf, tendlicalvf (not calculated) licalvf, strbasemag, uvelmean, vvelmean,hfgeoubed; to be included in final licalvf, strbasemag, uvelmean, vvelmean,hfgeoubed; to be included in final None None None None Geo heat flux (not used), Surface & basal T
(fixed inputs), Calving flux (not available without model modification)
None Calving flux (not computed), vertical velocity,
basal temperature (2D model)
Other Comments Not on final grid for final submission Not on final grid for final submission None None None Please clarify tendacabf definition None None Full SMB model in progress,
new set of runs to be submitted
Initialization procedure to be improved,
new set of runs to be submitted
None None 2D output files grouped by year, not variable None None