InitMIP Greenland

From CliC Wiki
Jump to: navigation, search
CHARACTERISTICS ARC_PISM_05km AWI_ISSM1 AWI_ISSM2 BCG_BISICLES1 BCG_BISICLES2 BCG_BISICLES3 DMI_PISM0 DMI_PISM1 DMI_PISM2 DMI_PISM3 DMI_PISM4 ILTS_PIK_SICOPOLIS1 ILTS_SICOPOLIS1 IMAU_IMAUICE20 IMAU_IMAUICE10 IMAU_IMAUICE05 JPL1_ISSM2 LANL_CISM LGGE_ELMER LGGE_ELMER2 LSCE_GRISLI MIROC_ICIES00 MIROC_ICIES01 MPI_PISM0INITMIP UAF_PISM151 UAF_PISM152 UAF_PISM301 UAF_PISM302 UAF_PISM451 UAF_PISM452 UCIJPL_ISSM ULB_FETISH1 ULB_FETISH2 VUB_GISMHOM VUB_GISMSIA
Numerical Method Finite difference, rectangular grid. Triangular Finite Element, Arbitrary Lagrangian/Eulerian Triangular Finite Element, Arbitrary Lagrangian/Eulerian Finite Volume with adaptive mesh refinement Finite Volume with adaptive mesh refinement Finite Volume with adaptive mesh refinement Finite difference method Finite difference method Finite difference method Finite difference method Finite difference method Finite difference method Finite Difference Finite difference de Boer et al., 2014 Finite difference de Boer et al., 2014 Finite difference de Boer et al., 2014 Finite Element (triangular P1), Arbitrary Lagrangian-Eulerian Finite Element (square/hexahedral) for velocity, Finite Volume for transport Triangular Finite Element Triangular Finite Element Finite Difference Finite Difference Finite Difference Finite Difference Finite Difference Finite Difference Finite Difference Finite Difference Finite Difference Finite Difference Finite Element Finite difference staggered grid (Pattyn, F,2016) Finite difference staggered grid (Pattyn, F,2016) Finite Difference, Alternating-Direction-Implicit Finite Difference, Alternating-Direction-Implicit
Native Grid 5000 m (horizontal) 20 m (vertical) H: 2.5-35 km, V: 15 layers H: 2.5-35 km, V: 15 layers H: anisotropic, usually 1.2-4.8 km V: 10 layers (thermal only) H: anisotropic, usually 2.4-4.8 km V: 10 layers (thermal only) H: anisotropic, usually 4.8 km V: 10 layers (thermal only) H: 5.0 km V: 10 m H: 5.0 km V: 10 m H: 5.0 km V: 10 m H: 5.0 km V: 10 m H: 5.0 km V: 10 m H: 5 km V: 81 layers (terrain-following, concentrating towards the base) H: 5 km, V: 81 layers H: 20 km regular grid V: 15 layers (terrain following) H: 10 km regular grid V: 15 layers (terrain following) H: 5 km regular grid V: 15 layers (terrain following) H: 1-15 km, V: N/A (2D model) H: 4 km, V: 10 layers H: 1.5-45 km, no vertical layers H: 1.0-5 km, no vertical layers H: 5 km, V: 21 layers H: 10 km, V: 26 layers H: 10 km, V: 26 layers H: 5 km, V: 50 m terrain following H: structured, 1500m;V: equally-spaced, 20m H: structured, 1500m;V: equally-spaced, 20m H: structured, 3000m;V: equally-spaced, 20m H: structured, 3000m;V: equally-spaced, 20m H: 4500 m; V: 20 m, equal spacing H: 4500 m; V: 20 m, equal spacing H: 30 km V: 14 layers H: 10 km 11 vertical layers of ice temperature H: 10 km 11 vertical layers of ice temperature H: 5 km, V: 30 layers H: 5 km, V: 30 layers
Native Projection Bamber et al (2001) EPSG 3413 EPSG 3413 Morlighem et al, 2014 Morlighem et al, 2014 Morlighem et al, 2014 Same as Bamber et al. (2001) Same as Bamber et al. (2001) Same as Bamber et al. (2001) Same as Bamber et al. (2001) Same as Bamber et al. (2001) Same as Bamber et al. (2001) Bamber et al, 2001 Bamber et al, 2001 Bamber et al, 2001 Bamber et al, 2001 Polar Stereographic (70°N, 45°W) Bamber DEM (polar stereographic, WGS84) Bamber et al, 2001 Bamber et al, 2001 Bamber et al, 2001 Not Given Not Given Bamber et al, 2001 EPSG 3413 EPSG 3413 EPSG 3413 EPSG 3413 EPSG 3413 EPSG 3413 EPSG3413 Bamber et al, 2001 Bamber et al, 2001 Polar Stereographic (70°N, 45°W) Polar Stereographic (70°N, 45°W)
Interpolation Method to Diagnostic Grid Regridded at runtime by PISM procedures First order conservative interpolation First order conservative interpolation ISMIP6 Suggested Procedure for output, Matlab TriScatter for SMB & T ISMIP6 Suggested Procedure for output, Matlab TriScatter for SMB & T ISMIP6 Suggested Procedure for output, Matlab TriScatter for SMB & T N/A N/A N/A N/A N/A N/A Same Grid ISMIP6 suggested procedure ISMIP6 suggested procedure ISMIP6 suggested procedure Linear First-order conservative Flux variables: Conservative (remapycon) State variables: Bilinear Flux variables: Conservative (remapycon) State variables: Bilinear Same Grid Not Given Not Given Same Grid ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure Linear Matlab 2-D Linear interpolation Matlab 2-D Linear interpolation ISMIP6 Suggested Procedure ISMIP6 Suggested Procedure
Time Step Adaptive 0.1a 0.1a Adaptive, mean ~ 12.5 days Adaptive, mean ~ 12.5 days Adaptive, mean ~ 12.5 days Adaptive Adaptive Adaptive Adaptive Adaptive 0.5 years 6 months 1 year 1 year 1 year 2 weeks 0.2 year 0.005 year 0.005 year Adaptive 0.125 year 0.125 year Adaptive, << 1 year Adaptive Adaptive Adaptive Adaptive Adaptive Adaptive 1 week 0.2 year 0.01 year 0.01 year 0.01 year
Ice Flow Mechanics Hybrid Bueler and Brown (2009) HO (Blatter-Pattyn) HO (Blatter-Pattyn) SSA, vertical shear retained in nonlinear rheology, Schoof & Hindmarsh, 2010 SSA, vertical shear retained in nonlinear rheology, Schoof & Hindmarsh, 2010 SSA, vertical shear retained in nonlinear rheology, Schoof & Hindmarsh, 2010 Shallow Shelf, Shallow ice Shallow Shelf, Shallow ice Shallow Shelf, Shallow ice Shallow Shelf, Shallow ice Shallow Shelf, Shallow ice Shallow ice approximation SIA SIA SIA SIA SSA Depth-integrated HO, Goldberg, 2011 SSA SSA Hybrid SIA-SSA SIA SIA Hybrid SIA-SSA Hybrid. Bueler and Brown (2009) Hybrid. Bueler and Brown (2009) Hybrid. Bueler and Brown (2009) Hybrid. Bueler and Brown (2009) Hybrid. Bueler and Brown (2009) Hybrid. Bueler and Brown (2009) HO (Blatter-Pattyn) SIA Hybrid Shallow-Shelf/Shallow-Ice HO (Blatter-Pattyn) SIA
Basal Sliding Pseudo-plastic (q=0.6) u_b|^(s-1) * u_b with r and s equal 1 and Neff=rho_ice*g*H+rho_water*g*z_s u_b|^(s-1) * u_b with r and s equal 1 and Neff=rho_ice*g*H+rho_water*g*z_s Linear Linear Linear Weertman Sliding Weertman Sliding Weertman Sliding Weertman Sliding Weertman Sliding Weertman sliding law vb ~ τb^p/Nb^q (p = 3, q = 2) with sub-melt sliding Calov and Hutter, 1996 Greve & Herzfeld, 2013 Weertman sliding, Greve & Herzfeld, 2013 Weertman sliding law (m=3) Weertman sliding law (m=3) Weertman sliding law (m=3) Viscous sliding Pseudo-plastic (q = 0.5) Weertman sliding (m = 1) Weertman sliding (m = 1) Not Given Weertman sliding (m = 3) Weertman sliding (m = 3) Weertman sliding (m = 4) Pseudo-plastic (q=0.33) Pseudo-plastic (q=0.33) Pseudo-plastic (q=0.33) Pseudo-plastic (q=0.33) Pseudo-plastic (q=0.33) Pseudo-plastic (q=0.33) Linear Weertman sliding (m = 2) Weertman sliding (m = 2) Weertman sliding (m = 3), Local approach to basal shear stress, lubrication by meltwater parameterized Furst et al, 2013 and 2015 Weertman sliding (m = 3), lubrication by meltwater parameterized Furst et al, 2013 and 2015
Thermodynamics Not Given Enthalpy (Aschwanden et al, 2013) Enthalpy (Aschwanden et al, 2013) Thermomechanical Thermomechanical Thermomechanical Not Given Not Given Not Given Not Given Not Given Not Given Thermomechanical Not Given Not Given Not Given Thermomechanical Thermomechanical None; Fixed viscosities from SICOPOLIS None; Fixed viscosities from SICOPOLIS Thermomechanical Thermomechanical Thermomechanical Enthalpy (Aschwanden et al, 2013) Not Given Not Given Not Given Not Given Not Given Not Given Thermomechanical Not Given Not Given Thermomechanical Thermomechanical
Basal Hydrology Basal meltwater calculated and used in substrate cohesion calculation. No routing of meltwater though. Bueler and van Pelt (2015) None None None None None Local Local Local Local Local None None None None None None None None None Darcian, from Peyaud, 2006 None None Local storage only " ‘null’ model, locally produced basal meltwater can reduce the yield stress. Bueler and van Pelt (2015)" " ‘null’ model, locally produced basal meltwater can reduce the yield stress. Bueler and van Pelt (2015)" " ‘null’ model, locally produced basal meltwater can reduce the yield stress. Bueler and van Pelt (2015)" " ‘null’ model, locally produced basal meltwater can reduce the yield stress. Bueler and van Pelt (2015)" " ‘null’ model, locally produced basal meltwater can reduce the yield stress. Bueler and van Pelt (2015)" " ‘null’ model, locally produced basal meltwater can reduce the yield stress. Bueler and van Pelt (2015)" None None None None None
Ice Shelves Yes Yes Yes Yes Thickness-based melting parameterization Yes Thickness-based melting parameterization Yes Thickness-based melting parameterization Yes Yes Yes Yes Yes No No No No No Yes Observed melt rates No Yes Yes Yes No No Yes Yes Yes Yes Yes Yes Yes Yes No No No No
Advance and Retreat Grounding line can migrate freely. Freely evolving grounding line fixed position of calving front and grounded ice margin Freely evolving grounding line fixed position of calving front Freely evolving grounded ice margin, grounding line, and calving front after initialization Freely evolving grounded ice margin, grounding line, and calving front after initialization Freely evolving grounded ice margin, grounding line, and calving front after initialization Freely evolving grounded ice margin, grounding line, and calving front after initialization Freely evolving grounded ice margin, grounding line, and calving front after initialization Freely evolving grounded ice margin, grounding line, and calving front after initialization Freely evolving grounded ice margin, grounding line, and calving front after initialization Freely evolving grounded ice margin, grounding line, and calving front after initialization Freely evolving grounded ice margin Freely evolving grounded ice margin, limited to present-day extent Freely evolving grounded ice margin to prescribed present day coast mask. Freely evolving grounded ice margin to prescribed present day coast mask. Freely evolving grounded ice margin to prescribed present day coast mask. Freely evolving grounding line Freely evolving grounded ice margin Freely evolving grounded ice margin and grounding line Fixed calving front Freely evolving grounded ice margin and grounding line Fixed calving front Freely evolving grounded ice margin, grounding line, and calving front Retreat only Free Freely evolving grounded ice margin, grounding line, and calving front Freely evolving grounded ice margin, grounding line, and calving front; retreat only for calving front Freely evolving grounded ice margin, grounding line, and calving front; retreat only for calving front Freely evolving grounded ice margin, grounding line, and calving front; retreat only for calving front Freely evolving grounded ice margin, grounding line, and calving front; retreat only for calving front Freely evolving grounded ice margin, grounding line, and calving front; retreat only for calving front Freely evolving grounded ice margin, grounding line, and calving front; retreat only for calving front Freely evolving grounding line, Fixed Calving front Free evolving grounded ice margin, grounding line, and calving front in forward run. Fixed position in intialization run. Free evolving grounded ice margin, grounding line, and calving front in forward run. Fixed position in intialization run. Freely evolving grounded ice margin Freely evolving grounded ice margin
Grounding Line Determination Sub-grid scheme (Feldmann et al., 2014) used to interpolate surface gradients and driving stress, but NOT basal melt Subelement migration Subelement migration Flotation Flotation Flotation Flotation Flotation Flotation Flotation Flotation N/A N/A floating criterion floating criterion floating criterion Floating, sub-element parameterization Flotation Flotation Flotation Flotation Flotation Flotation Flotation Subgrid parameterization, Feldmann et al, 2014 Subgrid parameterization, Feldmann et al, 2014 Subgrid parameterization, Feldmann et al, 2014 Subgrid parameterization, Feldmann et al, 2014 Subgrid parameterization, Feldmann et al, 2014 Subgrid parameterization, Feldmann et al, 2014 Subgrid parameterization, Feldmann et al, 2014 Floating criterion Floating criterion N/A N/A
Calving Floating ice that exceeds present-day extent is automatically calved Fixed position for the calving front (i.e. calving exactly compensates outflow domain margins) Fixed position for the calving front (i.e. calving exactly compensates outflow domain margins) Surface crevasse depth, Benn et al, 2007; Nick et al, 2010 Surface crevasse depth, Benn et al, 2007; Nick et al, 2010 Surface crevasse depth, Benn et al, 2007; Nick et al, 2010 At prescribed coast mask, ocean-induced ice discharge parameterized, Furst et al, 2015 At prescribed coast mask, ocean-induced ice discharge parameterized, Furst et al, 2015 At prescribed coast mask, ocean-induced ice discharge parameterized, Furst et al, 2015 At prescribed coast mask, ocean-induced ice discharge parameterized, Furst et al, 2015 At prescribed coast mask, ocean-induced ice discharge parameterized, Furst et al, 2015 Sub-grid-scale ice discharge parameterization No explicit calving diagnosed as mass transport outside of prescribed coast mask at marine terminating outlet glaciers diagnosed as mass transport outside of prescribed coast mask at marine terminating outlet glaciers diagnosed as mass transport outside of prescribed coast mask at marine terminating outlet glaciers Fixed calving front All floating ice calves Fixed position for calving front Fixed position for calving front None All floating ice calves All floating ice calves Thickness < 200 m; Stress-based law, Levermann et al, 2012 Retreat only Retreat only Retreat only Retreat only Retreat only Retreat only None No calving No calving At prescribed coast mask, ocean-induced ice discharge parameterized, Furst et al, 2015 At prescribed coast mask, ocean-induced ice discharge parameterized, Furst et al, 2015
Spin-Up/Initialization Methods 50 ka with fixed geometry followed by 15 ka with freely-evolving geometry using present-day climatology (Ettema et al., 2009). Combined: horizontal velocity assimilated, thermo spin-up (MODERN SURFACE TEMP) Combined: horizontal velocity assimilated, thermo spin-up (PALEO SURFACE TEMP) Combined: Horizontal velocity assimilation with fixed geometry followed by relaxation of surface Combined: Horizontal velocity assimilation with fixed geometry followed by relaxation of surface Combined: Horizontal velocity assimilation with fixed geometry followed by relaxation of surface Spin up Spin up Spin up Spin up Spin up 135 ka Forcing: GRIP δ18O on the GICC05 time scale converted ΔT by conversion factor 2.4°C/‰, 7.3% change precip rate for 1°C of ΔT Spin-Up (125 ka) with T converted from GRIP delta-18 O records; essentially fixed topography Steady state spinup with constant, present-day boundary conditions. Steady state spinup with constant, present-day boundary conditions. Steady state spinup with constant, present-day boundary conditions. Combined: Assimilation of present conditions, followed by 50 ka relaxation and historical run Spin-Up (20 ka) equilibration, starting from present day geometry Combined: Viscosity from SICOPOLIS Spin-Up; horizontal velocity assimilated Combined: Viscosity from SICOPOLIS Spin-Up; horizontal velocity assimilated Combined: horizontal velocity assimilated, followed by 20 ka relaxation spin-up Combined: Basal sliding matched to observed geometry (Pollard & DeConto, 2012);thermal spin-up to steady state Spin-Up (125 ka), free evolution, with SeaRISE forcing Spin-Up (135 ka), free evolution, using SeaRISE temperature index and sea level Initialization over a glacial cycle combined a short relaxation run Initialization over a glacial cycle to get the basal conditions and the enthalpy field combined with a relaxation simulation that starts with present-day ice thickness Initialization over a glacial cycle combined a short relaxation run Initialization over a glacial cycle to get the basal conditions and the enthalpy field combined with a relaxation simulation that starts with present-day ice thickness Initialization over a glacial cycle combined a short relaxation run Initialization over a glacial cycle to get the basal conditions and the enthalpy field combined with a relaxation simulation that starts with present-day ice thickness Data Assimilation Model initialization based on Pollard and DeConto (2012b) Hi freq noise smoothed in basal sliding coeff. Model initialization based on Pollard and DeConto (2012b) Hi freq noise smoothed in basal sliding coeff. Spin-Up (2 glacial cycles with SIA, 3000 years HO) targeting observed geometry and volumenevolution for 1990-onwards Spin-Up (2 glacial cycles) forced by T derived from ice core data then(1958-2005) by ECMWF atmosphere
Initial Surface Mass Balance From Ettema et al., (2009) downscaled version RACMO2.3; yearly mean for the period 1979-2014 Noel et al. (2015) (pers. Comm, paper in prep.) downscaled version RACMO2.3; yearly mean for the period 1979-2014 Noel et al. (2015) (pers. Comm, paper in prep.) 1997-2006 mean from HIRHAM5 RCM with lateral boundary forcing from ERAI Lucas-Pilcher et al, 2012 1997-2006 mean from HIRHAM5 RCM with lateral boundary forcing from ERAI Lucas-Pilcher et al, 2012 1997-2006 mean from HIRHAM5 RCM with lateral boundary forcing from ERAI Lucas-Pilcher et al, 2012 Positive degree day Positive degree day Positive degree day Positive degree day Positive degree day Positive degree day PDD, Greve & Herzfeld, 2013 RACMO extended to ice free regions with SMB gradient method Helsen et al., 2012 RACMO extended to ice free regions with SMB gradient method Helsen et al., 2012 RACMO extended to ice free regions with SMB gradient method Helsen et al., 2012 SMB reconstruction, Box, 2013 1961-1990 RACMO2 climatology, Van Angelen et al, 2013 1989-2008 mean from MAR forced by ERAI 1989-2008 mean from MAR forced by ERAI 1979-2014 mean from MAR forced by ERAI From SeaRISE PDD (Reeh, 1991) PDD, no temperature lapse rate RACMO 1960-1990 mean RACMO 1960-1990 mean RACMO 1960-1990 mean RACMO 1960-1990 mean RACMO 1960-1990 mean RACMO 1960-1990 mean RACMO Constant in time. Based on regional climate model MAR Constant in time. Based on regional climate model MAR PDD/retention, different factors for snow vs ice, Janssens & Huybrechts, 2000 PDD/retention, different factors for snow vs ice, Janssens & Huybrechts, 2000
Year(s) of Initial Condition 2000 2000 2000 1997-2006 1997-2006 1997-2006 2000 2000 2000 2000 2000 1990 1990 1990 1990 1990 2012 1961-1990 2000-2010 2000-2010 2000 2004 2004 ~2006 ~2007 ~2007 ~2007 ~2007 ~2007 ~2007 2007 Not Given Not Given 2005 2005
Forward Experiment Duration 100 years 100 years 100 years 100 years 100 years 100 years 300 a 300 a 300 a 300 a 300 a 100 years 100 years 100 years 100 years 100 years 100 years 100 years 100 years 100 years 200 years 100 years 100 years 300 years 100 years 100 years 100 years 100 years 100 years 100 years 100 a 100 years 100 years 100 years 100 years
Parameter Values rho_i= 910kg m^(-3) rho_w= 1000kg m^(-3) g = 9.81 m s^(-2) rho_i = 917 kg m^(-3); rho_sw = 1027 kg m^(-3); g = 9.81 m s^(-2); beta = 7.9e-8 kPa^(-1) rho_i = 917 kg m^(-3); rho_sw = 1027 kg m^(-3); g = 9.81 m s^(-2); beta = 7.9e-8 kPa^(-1) rho_i = 917 kg m^(-3); rho_sw = 1023 kg m^(-3); g = 9.81 m s^(-2) rho_i = 917 kg m^(-3); rho_sw = 1023 kg m^(-3); g = 9.81 m s^(-2) rho_i = 917 kg m^(-3); rho_sw = 1023 kg m^(-3); g = 9.81 m s^(-2) ρi = 910 kg m^(-3) ρw = 1000 kg m^(-3) g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.81 m s^(-2) rho_i= 910kg m^(-3) rho_w= 1000kg m^(-3) g = 9.81 m s^(-2) rho_i= 910kg m^(-3) rho_w= 1000kg m^(-3) g = 9.81 m s^(-2) rho_i= 910kg m^(-3) rho_w= 1000kg m^(-3) g = 9.81 m s^(-2) rho_i = 917 kg m^(-3); rho_sw = 1023 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.8 m s^(-2) rho_i = 917 kg m^(-3); rho_sw = 1026 kg m^(-3); g = 9.81 m s^(-2); c_i = 2117 J/kg/deg; L_i = 337,500 J/kg rho_i = 910 kg m^(-3); rho_sw = 1028 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_sw = 1028 kg m^(-3); g = 9.81 m s^(-2) rho_i = 918 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_sw = 1028 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_sw = 1028 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1028 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1028 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.81 m s^(-2) rho_i = 910 kg m^(-3); rho_fw = 1000 kg m^(-3); g = 9.81 m s^(-2)
Data Sets Used Geothermal heat flux (Shapiro and Ritzwoller, 2004). Velocity: Rignot & Mouginot, 2012 Bed: Morlighem et al, 2014 with fill-in from Bamber et al, 2013 Geo Heat Flux: Shapiro & Ritzwoller, 2004 temperature time series: SeaRISE webpage present-day climate: Fausto et al (2009) RACMO2.3: B. Noel (not published yet) Geo Heat Flux: Shapiro & Ritzwoller, 2004 Velocity: Rignot & Mouginot, 2012 Geometry: Morlighem et al, 2014 Temperature (initialization): Price et al, 2011 Velocity: Rignot & Mouginot, 2012 Geometry: Morlighem et al, 2014 Temperature (initialization): Price et al, 2011 Velocity: Rignot & Mouginot, 2012 Geometry: Morlighem et al, 2014 Temperature (initialization): Price et al, 2011 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Bed: Bamber et al., 2013 Geo Heat Flux:M. Purucker (personalcommunication 2012) following the technique by Fox Maule et al., 2005 Velocity: N/A Bed: Herzfeld et al, 2012 Geo Heat Flux: Greve, 2005 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Velocity: Rignot & Mouginot, 2012 Geometry: Morlighem et al, 2014 Geo Heat Flux: Shapiro & Ritzwoller, 2004 None Velocity: MEaSUREs 2000-2008 Bed: Morlighem et al, 2015 (BedMachine)with fill-in from Bamber et al, 2013 Velocity: MEaSUREs 2000-2008 Bed: Morlighem et al, 2015 (BedMachine)with fill-in from Bamber et al, 2013 Velocity: Joughin et al, 2010 Bed/Surface: Bamber et al, 2013 Geo Heat Flux: Fox Maule et al, 2005 Not Given Not Given All from SeaRISE reference data set Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Geo Heat Flux: Shapiro & Ritzwoller, 2004 Velocity: Rignot & Mouginot, 2012 Bed: Morlighem et al, 2014 None None Velocity: Joughin et al, 2010 Geometry: Bamber et al, 2013 Geo Heat Flux: Shapiro & Ritzwoller, 2004, adjusted by ice core data Velocity: Joughin et al, 2010 Geometry: Bamber et al, 2013 Geo Heat Flux: Shapiro & Ritzwoller, 2004, adjusted by ice core data
Requested Variables Not Submitted Fractional areas not available. tendlibmassbf: no output available tendlibmassbf: no output available Geo heat flux (not used), Surface & basal T (fixed inputs), Calving flux (not available without model modification) Geo heat flux (not used), Surface & basal T (fixed inputs), Calving flux (not available without model modification) Geo heat flux (not used), Surface & basal T (fixed inputs), Calving flux (not available without model modification) None licalvf and tendlicalyf are dummy values (no explicit calving rate) None None None Calving flux (not computed), vertical velocity, basal temperature (2D model) None hfgeoubed, libmassbf, litempsnic, litempbot (no thermal calculations) uvelsurf, vvelsurf, wvelsurf, uvelbase, vvelbase, wvelbase (SSA is depth averaged) licalvf (interpolation TBD) hfgeoubed, libmassbf, litempsnic, litempbot (no thermal calculations) uvelsurf, vvelsurf, wvelsurf, uvelbase, vvelbase, wvelbase (SSA is depth averaged) licalvf (interpolation TBD) basal/surface vertical velocities, basal mass balance flux, calving flux (not calculated); land ice/grounded ice/ floating ice fractions (not used by model); limnsw, iareaf, tendlibmassbf, tendlicalvf (not calculated) licalvf, strbasemag, uvelmean, vvelmean,hfgeoubed; to be included in final licalvf, strbasemag, uvelmean, vvelmean,hfgeoubed; to be included in final None applied_land_ice_surface_specific_mass_balance_flux (requires changes to the PISM code base) applied_land_ice_surface_specific_mass_balance_flux (requires changes to the PISM code base) applied_land_ice_surface_specific_mass_balance_flux (requires changes to the PISM code base) applied_land_ice_surface_specific_mass_balance_flux (requires changes to the PISM code base) applied_land_ice_surface_specific_mass_balance_flux (requires changes to the PISM code base) applied_land_ice_surface_specific_mass_balance_flux (requires changes to the PISM code base) Libmassbf (no basal melting is considered) wvelsurf/base/mean (velocity is vertical integrated) licalvf (no calving in the model) tendlibmassbf (no basal melting) tendlicalvf (no calving) Libmassbf (no basal melting is considered) wvelsurf/base/mean (velocity is vertical integrated) licalvf (no calving in the model) tendlibmassbf (no basal melting) tendlicalvf (no calving) None None
Other Comments 5-year flux averages calculated for most of the requested variables, except basal melt and dHdt. None None 2D output files grouped by year, not variable 2D output files grouped by year, not variable 2D output files grouped by year, not variable Flux variables averaged offline (post-processing of model output) over all native time steps for yearly scalar output and for 5-year periods for 2D fields. Flux variables averaged offline (post-processing of model output) over all native time steps for yearly scalar output and for 5-year periods for 2D fields. None None None None None None None Please clarify tendacabf definition None None Full SMB model in progress, new set of runs to be submitted None None None None None None None None The model includes a parameterization for basal lubrication linked to basal meltwater discharge and a parameterization for ocean-induced ice discharge at marine margins The model includes a parameterization for basal lubrication linked to basal meltwater discharge and a parameterization for ocean-induced ice discharge at marine margins